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Abstract
The differential constraints are applied to obtain explicit solutions of nonlinear
diffusion equations. Certain linear determining equations with parameters are
used to find such differential constraints. They generalize the determining
equations used in the search for classical Lie symmetries.
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1. Introduction

Differential constraints were introduced originally in the theory of partial differential equations
of the first order. In particular, Jacobi used differential constraints to find the total integral of
nonlinear equation

F
(
x1, . . . , xn, z, zx1 , . . . , zxn

) = 0.

König applied them to the equation of the second order [1]. They required that the
corresponding overdetermined system was compatible. The general theory of overdetermined
systems was developed by Delassus, Riquier, Cartan, Ritt, Kuranishi, Spencer and others; one
can find references in [2]. Now the applications of overdetermined systems include diverse
fields such as differential geometry, continuum mechanics and nonlinear optics.

The general formulation of the method of differential constraints requires that the original
system of partial differential equations

F 1 = 0, . . . Fm = 0 (1)

be enlarged by appending additional differential equations (differential constraints)

h1 = 0, . . . hp = 0 (2)

such that the overdetermined system (1), (2) satisfies some conditions of compatibility.
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One can derive many exact solutions of partial differential equation by means of
differential constraints. It was particularly shown in [3] that some soliton solutions can
be found using differential constraints. Olver and Rosenau [4], Olver [5], Kaptsov [3],
Levi and Winternitz [6] show that many reduction methods such as non-classical symmetry
groups, partial invariance, separation of variables and the Clarkson–Kruskal direct method
can be included into the method of differential constraints. In practice, methods based on
the Riquier–Ritt theory of overdetermined systems of partial differential equations may be
difficult. The problem of finding all differential constraints compatible with certain equations
can be more complicated than the investigation of the original equations.

Recently, a new method was proposed for finding differential constraints, which uses
linear determining equations. These equations are more general than the classical determining
equations for Lie generators [7] and depend on some parameters. Given an evolution
equation

ut = F(t, x, u, u1, . . . , un) (3)

where uk = ∂ku
∂xk , then according to [8] the linear determining equation corresponding to (3) is

of the form

Dt(h) =
n∑

i=0

i∑
k=0

bikD
i−k
x

(
Fun−k

)
Dn−i

x (h) bik ∈ R. (4)

Here and throughout Dt,Dx are the operators of total differentiation with respect to t
and x. Equality (4) must hold for all solutions of (3). The function h may depend on
t, x, u, u1, . . . , up. The number p is called the order of the solution of equation (4). If we
have some solution h, then the corresponding differential constraint is

h = 0. (5)

It was also shown in [8] that equations (4) and (5) constitute the compatible system. Thus we
sketch the derivation of some solutions to the evolution equation (4):

(I) Find solutions of the linear determining equations (4).
(II) Fixing the function h, we obtain differential constrain (5).

(III) Find the general solution of (5) which includes some arbitrary functions ai depending
on t.

(IV) Substitute the general solution into (3). It leads to ordinary differential equations for
functions ai .

(V) Solve the ordinary differential equations and obtain a solution of the evolution
equation (3).

In this paper, we start with determination of the solutions of linear determining equations
of the second and third orders for the nonlinear diffusion equation

ut = (ukux)x + f (u).

These solutions exist only if f belongs to the special forms. Then we use the obtained
functions h to find solutions of the last equation. In the final section, we derive exact solutions
of two-dimensional equation

ut = � ln(u).

2. Linear determining equations for differential constraints

In this section, we briefly discuss the method of linear determining equations [8]. For simplicity
we will consider an equation of the second order,
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ut = F(t, x, u, u1, u2). (6)

According to [3] a differential constraint

h = un + g(t, x, u, u1, . . . , un−1) = 0 (7)

and equation (6) satisfy the compatibility conditions if and only if

Dth|[E]∩[H ] = 0. (8)

The latter fact means that Dth vanishes on [E] ∩ [H ]. We denote by [E] equation (6) and its
differential consequences with respect to x. The constraint (7) and its differential consequences
with respect to x are denoted by [H ].

A manifold H given by equation (7) is called an invariant manifold of (6) if the function
h satisfies (8). It can be shown that (8) is equivalent to the following condition,

Dt(h)|[E] = Fu2D
2
x(h) +

(
Fu1 + nDx

(
Fu2

))
Dx(h) +

(
Fu + nDx

(
Fu1

) − hun−1Dx

(
Fu2

)

+
n(n − 1)

2
D2

x

(
Fu2

)
+ Fu2hhun−1un−1 − 2Fu2Dx

(
hun−1

))
h (9)

with n � 4.
Indeed, it is easy to see that

Dt(h)|[E] � Dn
x(F ) + hun−1D

n−1
x (F ) + hun−2D

n−2
x (F ). (10)

Here and throughout we write α � β to indicate that there are no terms including un, un+1,

un+2 in the difference α − β . Since n � 4, the terms on the right-hand side of (10) can be
represented as follows:

Dn
x(F ) � Fu2un+2 +

[
Fu1 + nDx

(
Fu2

)]
un+1 +

[
Fu + nDx

(
Fu1

)
+

n(n − 1)

2
D2

x

(
Fu2

)]
un

hun−1D
n−1
x (F ) � hun−1

[
un

(
Fu1 + (n − 1)Dx

(
Fu2

))
+ un+1Fu2

]
hun−2D

n−2
x (F ) � unFu2hun−2 .

Hence (10) can be written as

Dt(h)|[E] � Fu2un+2 + un+1
[
Fu1 + nDx

(
Fu2

)
+ Fu2hun−1

]
+

[
Fu +

n(n − 1)

2
D2

x

(
Fu2

)

+ nDx

(
Fu1

)
+ hun−1

(
Fu1 + nDx

(
Fu2

))
+ Fu2hun−2

]
un.

It is easy to see that

Dx(h) � un+1 + unhun−1

D2
x(h) � un+2 + un+1hun−1 + un

[
hun−2 + 2Dx

(
hun−1

) − unhun−1un−1

]
.

Hence the difference

Dt(h)|[E] − Fu2D
2
x(h) − [

Fu1 + nDx

(
Fu2

)]
Dx(h)

contains no terms with un+2 and un+1. A direct calculation shows that there are no terms
containing un in the expression for the function

γ = Dt(h)|[E] − M(h)
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where

M(h) = Fu2D
2
x(h) +

[
Fu1 + nDx

(
Fu2

)]
Dx(h) +

[
Fu + nDx

(
Fu1

) − hun−1Dx

(
Fu2

)

+
n(n − 1)

2
D2

x

(
Fu2

)
+ Fu2hhun−1un−1 − 2Fu2Dx

(
hun−1

)]
h

that is, γ � 0. We claim that γ is equal to zero. Since H is an invariant manifold, it follows
that

M(h) + γ = 0

on the set [E] ∩ [H ]. Clearly, M(h) vanishes there, therefore

γ|[E]∩[H ] = 0.

Since γ is independent of ut , utx, . . ., we can rewrite the last equality as follows:

γ|[H ] = 0.

As shown above, γ � 0, that is γ can depend only on un−1, un−2, . . . . On the other hand, h
depends on un. Hence γ is equal to zero.

It is clear that equation (9) is difficult to solve, therefore, in place of the nonlinear equation,
we propose to use linear equations of a similar kind in the search for invariant manifolds. This
leads to the following definition.

The equation of the form

Dt(h)|[E] = Fu2D
2
x(h) +

(
c1Fu1 + c2Dx

(
Fu2

))
Dx(h) +

(
c3Fu + c4Dx

(
Fu1

)
+ c5D

2
x

(
Fu2

))
h

(11)

is called the linear determining equation corresponding to (6). Here c1, . . . , c5 are some
constants.

Obviously, if h satisfies (11), then h = 0 is an invariant manifold of (6). The classical
determining equations used in the search for infinitesimal operators [7] are special cases of
(11), with c1 = c3 = 1, c2 = c4 = c5 = 0. However, the method of conditional symmetries
[9] of Bluman and Cole can give other invariant manifolds. In fact, they require that the
function

h = ξ(t, x, u)ut + τ (t, x, u)ux + η(t, x, u)

be a solution of equation (8). Although it is difficult to seek the general solution of (8), some
authors found interesting solutions [6, 9, 10].

King, Galaktionov and Posashkov derived many solutions of equation (7) constructing
finite-dimensional functional linear spaces invariant under a given differential operator
[11–16]. They seek solutions of the form

u(t, x) =
N∑

i=0

fi(t)gi(x).

In fact, the functions gi satisfy linear ordinary differential equations [17]. Moreover, it is
necessary to rewrite equation (6) in the form which includes linear and quadratic terms or
cubic nonlinearities [14]. This approach will be called invariant subspace method. When we
apply the linear determining equations we can use the original equation (6) without restrictions
on linear differential constraints.
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3. Solutions of linear determining equations

The nonlinear diffusion equation

ut = (Q(u)ux)x + f (u) (12)

often arises in the description of various physical processes. The group classification of the
equation has been carried out in [18]. In physical applications Q is usually taken to be a power
function. In this section, we consider the equation

ut = (uqux)x + f (u) (13)

where f is a differentiable function, q �= 0. If q = −2, f = u or f = const then equation (8)
can be linearized. We shall not discuss this case here.

The main goal of this section is to find solutions of (11). The linear determining equation,
which corresponds to (13), is

Dth|[E] = uqD2
xh + b1quxu

q−1Dxh +
(
b3quq−1uxx + b2q(q − 1)uq−2u2

x + b4fu

)
h (14)

where b1, . . . , b4 ∈ R. We shall seek solutions to (14) in the form

h = un + g(t, x, u, . . . , un−1)

where n � 2, uk = ∂ku
∂xk . The method for finding solutions is very similar to the standard

procedure applied in the group analysis of differential equations [19] and only one of all
possibilities is described here for the sake of brevity.

We set n = 2. First, let us express all t-derivatives in (14) using (13). As a result,
the left-hand side of (14) becomes a polynomial with respect to u3, u2. The polynomial
must identically vanish. Collecting similar terms we obtain the following relations for the
coefficients of u3 and u2

2

q(b1 − 4) = 0 ugu1u1 + q(b3 − 3) = 0.

Thus b1 = 4 and g can be represented as follows,

g = (3 − b3)q

2u
u2

1 + a(u, t, x)u1 + g1(u, t, x).

Here a and g1 must be functions of u, t and x alone. Collecting the coefficients of u2u
2
1 and

u2u1, we have the equations

2b2q − 2b2 − b2
3q + b3q + 4b3 − 6q = 0

2uau + q(b3 + 1)a = 0.
(15)

It follows from the last equation that

a = a1(t, x)u− (1+b3)

2 q

where a1 is a function of t and x. Next we consider the coefficient u3
1 and obtain equation

4b2q − 4b2 + b2
3q − 4b3q + 2b3 − 9q + 6 = 0. (16)

From (15) and (16) it follows that b3 = 1 or b3 = q+2
q

.

Assuming b3 = 1, we obtain b2 = 3q−2
q−1 . The coefficient of u2 gives us equation

uq+2 (
2a1x

+ fu(b4 − 1)
)

+ u2q+1qg1 = 0.

The equation enables us to express

g1 = 1

q
u1−q

(
fu(1 − b4) − 2a1x

)
.
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The coefficient of u2
1 yields Euler equation

u3(1 − b4)fuuu + u2(2 − qb4 − 2b4)fuu − uq2fu + q2f = 0.

Consider for simplicity the case b4 = 1. It is easy to see that the last equation has two types
of solutions,

f = ku + nu−q q �= −1

or

f = ku + nu ln u q = −1

where k, n are arbitrary constants. Let us focus on f = ku + nu−q . It follows from above
calculations and equation (14) that

uq+1 (−qa1t
− 3uqqa1xx

− 4uqa1xx
+ kq2a1

)
u1 + nq2a1u1

+ 2uq+2 (
a1tx

− uqa1xxx
− kqa1x

)
+ 2una1x

= 0. (17)

From (17) we have na1 = 0.
If a1 = 0, then the solution of (14) is h = u2 + qu2

1

/
u. If n = 0 and q �= − 4

3 , then one
easily computes

a1 = (rx + s) ekqt

h = u2 + q
u2

1

u
+

(
(rx + s)u1 − 2

q
ur

)
u−q ekqt .

In the case q = − 4
3 , we obtain

a1 = (rx2 + sx + p) e− 4
3 kt

h = u2 − 4u2
1

3u
+

(
(rx2 + sx + p)u1 +

3

2
u(2rx + s)

)
u4/3 e− 4

3 kt .

It can be shown that the functions h lead to invariant solutions of the corresponding
equation (13).

We omit here for the sake of brevity intermediate calculations and give the list of solutions
to equation (14):

(1) If q = −1 and f = su + ru ln(u), then

h = u2 − u2
1

u
.

(2) If q �= −1 and f = su + ru−q , then

h = u2 +
qu2

1

u
.

(3) If q = −2 and f = su + ru3, then

h = u2 − 3u2
1

2u
.

(4) If q = 1 and f = ru, then

h = u2 + s ertu−2u1 + r/3.

(5) If q is an arbitrary constant and f = su + ru1−q , then

h = u2 − (q − 1)u2
1

u
.

Here r, s ∈ R.
We did not include functions h that correspond to invariant solutions of equation (13).
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If we look for solutions to equation (14), which depend on third derivative, then we will
obtain the following list:

(1) If q is an arbitrary constant and f = su + ru1−q + n(q+1)

q2 uq+1, then

h = u3 +
3(q − 1)

u
u1u2 + (q2 − 3q + 2)

u3
1

u2
+ nu1.

(2a) If q �= 1 and f = nu + r
q
uq+1, then

h = u3 +
(3q − 1)

u
u1u2 + q(q − 2)

u3
1

u2
+ ru1. (18)

(2b) If q = −2 or q = − 4
3 and f = nu + r

q
uq+1 + muq+3 then h is also given by (13).

(3) If q = − 1
2 and f = mu, then

h = u3 − 5u1u2

2u
+

5u3
1

4u2
+ r e−3mt/2u5/2 + s emt/2u1/2.

(4) If q = − 3
2 and f = nu + mu5/2, then

h = u3 − 15u1u2

2u
+

35u3
1

4u2
+ r e−3nt/2u5/2.

(5) If q = − 1
2 and f = mu − 2ku1/2, then

h = u3 − 5u1u2

2u
+

5u3
1

4u2
+ ku1 + s emt/2u1/2.

(6) If q = − 3
2 and f = nu, then

h = u3 − 15u1u2

2u
+

35u3
1

4u2
+ s e−7n/2t u9/2 + r e−3nt/2u5/2.

(7) If q = −1 and f = mu, then

h = u3 − 4u1u2

u
+

3u3
1

u2
+ s e−2mtu2u1.

Here r, s,m, n ∈ R. We also did not include functions h leading to invariant solutions
of (13).

We have found solutions of (14) which correspond to special functions f . Most of these
functions lead to the diffusion equations (13) that have been studied in [11–16]. However,
we did not transform equation (13). Moreover, the solutions of (14) generate new nonlinear
differential constraints.

4. Solutions of diffusion equations

In this section, we shall use the functions obtained above to construct solutions of diffusion
equations (13). One can apply the method described in the introduction.

We first take the function h = u2 + qu2
1

/
u, where q ∈ R, corresponding to some cases

mentioned above. Simply by equating this function to zero,we obtain the differential constraint

u2 + qu2
1

/
u = 0. (19)

Equation (19) has two types of solutions,

u = (c1x + c2)
1

q+1 q �= −1 (20)

u = c1 ec2x q = −1 (21)

where c1, c2 are functions of t.
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If we substitute the representation (21) into equation

ut = (ux/u)x + ku ln u (22)

then this leads us to differential equations for c1, c2. From these equations it is easy to find
c1, c2 and obtain the following solution of (22),

u = s1exp(s2x ekt ) s1, s2 ∈ R.

Obviously, this is a regular solution. If s2 < 0, then u −→ 0 as x → ∞.
This solution can be found by means of easy generalization of the invariant subspace

method. Indeed, the transformation u = ev leads (22) to the form

vt = e−vvxx + kv.

Obviously, a linear subspace W = {1, x} generated by functions 1 and x is invariant under
nonlinear operator A(v) = e−vvxx . It follows that equation (22) has above solution.

Substituting (20) into equation

ut = (uqux)x + su + ru−q

we find the solution

u = est

(
ax + b − r

s(q + 1)
exp(−s(q + 1)t)

) 1
q+1

with a, b ∈ R. If q satisfies the condition −1 < q , then this solution is regular. The last
solutions can be found by generalized version of the invariant subspace method.

Now let us consider some differential constraints of the third order. We start with the
equation

ut = (uqux)x + su + ru1−q + n
q + 1

q2
uq+1 n ∈ R. (23)

As explained above, this equation is compatible with the differential constraint

u3 + 3(q − 1)
u1u2

u
+ (q2 − 3q + 2)

u3
1

u2
+ nu1 = 0. (24)

By a change of variable v = uq one may rewrite (23), (24) in the following way:

vt = vvxx +
1

q
v2

x + n
q + 1

q
v2 + sqv + rq (25)

v3 + nv1 = 0. (26)

If n � 0, then we have Galactionov’s solutions [15] obtained by means of the invariant
subspace method.

We will give one example of explicit solution of equation (25), with n = −1, q = −1
and r = 0. This solution has the representation

v(t, x) = a + b ex + c e−x (27)

and the functions a, b, c are

a = a1 sin(pr1 er1t + m) er1t/cos(pr1 er1t + m)

b = a2 er1t/cos(pr1 er1t + m)

c = a3 er1t/cos(pr1 er1t + m)

where a1 = pr2
1 , a3 = p2r4

1

/
4a2, r1 = −s and p, a2,m are arbitrary constants.
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Now let us consider the special case of equation (23)

ut = (u−1/2ux)x + mu − 2k
√

u m, k ∈ R (28)

and the differential constraint

u3 − 5u1u2

2u
+

5u3
1

4u2
+ ku1 + s emt/2√u = 0. (29)

Using equation (28), one can write (29) as

(ln u)tx + s emt/2u−1 = 0.

Replacing ln(emt/2u−1) by w, the last equation is replaced by the Liouville equation

wtx = s ew.

Since the general solution of the Liouville equation is

w = ln
2T ′X′

s(T + X)2

it gives the representation

u = s(T + X)2

2T ′X′ emt/2

where T and X are the arbitrary functions of t and x respectively.
It is possible to show that the last representation leads to the solution

u = (a1 + a2 emt/2)2 (30)

where a1, a2 are functions of x. This yields the following system for a1 and a2:

a1xx
+ a2

1m
/

2 − a1k = 0 (31)

a2xx
+ a1a2m/2 − a2k = 0. (32)

In general, it is possible to express a1 in terms of the Weierstrass function ℘ and a2 in terms
of Lamé’s function [20] . However, if m = 12 and k = 4 , then the functions

a1 = 1

cosh2(x)

a2 = a

cosh2(x)
+

b

cosh2(x)

(
sinh 4x

32
+

sinh 2x

2
+

3x

8

)
a, b ∈ R

satisfy equations (31) and (32).
King [11] found solutions of the multidimensional version of (28), with m = k = 0,

namely

ut = ∇ · (u−1/2∇u).

The solutions have the form

u = (a1 + a2t)
2

where a1 and a2 are some functions of x ∈ R
n. Galaktionov and Posashkov [16] explained

existence of these solutions by means of the invariant subspace method. The same is true of
the representation (30).

According to our results in the previous section, as k = 0 , equation (28) is compatible
with the differential constraint

u3 − 5u1u2

2u
+

5u3
1

4u2
+ r e−3mt/2u5/2 + s emt/2√u = 0. (33)
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Using equation (28), one can write (33) as

(ln u)tx + r e−3mt/2u + s emt/2u−1 = 0. (34)

Replacing ln(e−3mt/2u) by w in (34) yields

wtx + ew + sr e−w−mt = 0.

If we set s = 0, then from the last equation we find the following representation,

u = − 2X′T ′

(X + T )2
e3mt/2

where T and X are the arbitrary functions of t and x respectively. Substituting this representation
into (28) leads to equation√

−2/r e3mt/4(−m(T ′)1/2(X + T ) − 2(T ′)−1/2T ′′(X + T ) + 4(T ′)3/2)

= −2X′′′(X′)−3/2(X + T )2 + 8X′′(X′)−1/2(X + T )

− 8(X′)3/2 + (X′′)2(X′)−5/2(X + T )2.

It can be shown that the functions X and T satisfy the previous relation if and only if they
are solutions of the equations

(X′)3 = (c3X
3 + c2X

2 + c1X + c0)
2 (35)

(T ′)3 = A(−c3T
3 + c2T

2 − c1X + c0)
2 (36)

where c3, c2, c1 and c0 are arbitrary constants, A = (−2r)1/3.
The solutions of (35) and (36) can be expressed in terms of the Weierstrass function ℘

[21]. Indeed, one can write (35) and (36) as

(X′)3 = (c3(X − α1)(X − α2)(X − α3))
2 (37)

(T ′)3 = A(−c3(T + α1)(T + α2)(T + α3))
2. (38)

Replacing X − α1 by 1/Y in (37) yields

(Y ′)3 + B2(Y − b1)
2(Y − b2)

2 = 0

where B = c3(α2 − α1)(α3 − α1), b1 = 1
α2−α1

, b2 = 1
α3−α1

. Introducing new function Z such

that Z3 = B(Y − b1)(Y − b2), we obtain equation

(Z′)2 +
4B

9
Z3 +

B2(b1 − b2)
2

9
= 0. (39)

The solutions of the last equation are expressed in terms of the Weierstrass function ℘.
Applying the above process to (36), we obtain an equation such as (39). We think that it is
difficult to obtain the last solution by means of the invariant subspace method because the
Weierstrass function satisfies the nonlinear equation. The invariant subspaces are generated
by solutions of linear differential equations. On the other hand, we applied the differential
constraints of the third order in contradistinction to the method of conditional symmetries
where the constraints of the first order are considered.

If we fail in integrating the differential constraints explicitly, then we can do this
numerically [3]. We shall omit here other cases of the differential constraints and discuss
briefly in the next section the two-dimensional equation.

5. Two-dimensional equation

We consider here the fast diffusion equation

ut = � ln(u). (40)
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Some applications of this equation can be found in [22]. If we set u = 1/v, we
obtain

vt = v2� ln(v). (41)

Galaktionov [14] used the above representation to find exact solutions of (40). King [23] and
Pukhnachev [24] also obtained some interesting solutions.

One of these solutions is the travelling wave given by

v = 1 + c exp(mx + ny − (m2 + n2)t) (42)

where c,m and n are arbitrary constants. Obviously, this is invariant solution.
We can derive other explicit solutions using invariant subspaces [14] or linear differential

constraints. Galaktionov [14] obtained the following representation,

v = s0 + s1 cos(x) + s2 sin(x) + s3 ey + s4 e−y

where the functions si(t) satisfy ordinary differential equations

s′
0 + s2

1 + s2
2 − 4s3s4 = 0 (43)

s′
1 + s1s0 = 0

s′
2 + s2s0 = 0 (44)

s′
3 − s3s0 = 0 (45)

s′
4 − s4s0 = 0.

Now we find explicit solution of the last system. Because of (44) and (45) we have

s′
3/s

′
2 + s3/s2 = 0.

This yields

s2 = c2/s3 c2 ∈ R.

By arguments similar to that used above, we have

s1 = c1/s3 s4 = c4s3 c1, c4 ∈ R.

Substituting this into (43) leads to

s′
0 +

(
c2

1 + c2
2

)
s−2

3 − 4c4s
2
3 = 0.

From (45) we express the function s0 and obtain

(ln s3)
′′ = as2

3 − bs−2
3 (46)

with a = 4c4, b = c2
1 + c2

2.

Setting a = b = 1 one can derive two elementary solutions

s3 = tanh(t) s3 = tan(t).

In general, the solutions of (46) can be expressed in terms of elliptic functions. It is easy to
obtain the correspondent function u.

Using differential constraints we can seek new solutions of (41). Obviously, the solution
(42) satisfies the differential constraints

vx − mv + m = 0 vy − nv + n = 0.

It is possible to find other constraints that are linear with respect to x, y and v.
It can be shown that the differential constraints

vx +
c1 − c0 tan(t)

c2
0 + c2

1

(
v − xc0 − yc1 + t

(
c2

0 + c2
1

)) = c0

vy − c0 + c1 tan(t)

c2
0 + c2

1

(
v − xc0 − yc1 + t

(
c2

0 + c2
1

)) = c1
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are compatible with equation (41). Here c0 and c1 are arbitrary constants. The solution of
(41) corresponding to these constraints is

v = c0x + c1y − (
c2

0 + c2
1

)
t + c2 cos(t) exp(m1x + m2y + m3t). (47)

Here c0, c1, c2 are arbitrary constants and

m1 = c0 tan(t) − c1

c2
0 + c2

1

m2 = c1 tan(t) + c0

c2
0 + c2

1

m3 = −tan(t).

Galaktionov [14] constructed the invariant subspace W generated by the functions 1, cos(2x),

cosh(2y), cos(x) cosh(y). Obviously, the above solution cannot be obtained by means of this
invariant subspace.

It is well known that equation (40) is invariant under infinite-dimensional algebra of
symmetry [25]. Some solutions of (40) were obtained by means of these symmetries in
[18, 23]. It is convenient to apply the complex conjugate variables z = x + iy, z̄ = x − iy.
We can write equation (40) as

ut = 1

4

∂2 ln u

∂z∂z̄
. (48)

It is easy to check that (48) is invariant under the transformation

z′ = A(z) z̄′ = B(z̄) u′ = u/(AzBz̄)

where A(z) and B(z̄) are arbitrary functions. In other words, if the function f (t, z, z̄) is a
solution of (48), then f (t, A(z), B(z̄))AzBz̄ also satisfies (48).

For example, from (47) we can construct the following solution of equation (40),

u = AzĀz̄

C + a cos t exp(C tan(t) + ((d̄ − d)(A + Ā) + (d̄ + d)(−A + Ā)) i/2)

where A is an arbitrary function of z, Ā is the complex conjugate function, C = dA + d̄Ā −
4|A|2t , and a ∈ R, d ∈ C .

6. Conclusions

In sections 3 and 4 we have shown how the method of the linear determining equations
can be applied to find explicit solutions to nonlinear diffusion equations. We have found
exact solutions of these equations, using only the simplest solutions of the linear determining
equations. It is interesting to find solutions of the linear determining equations depending on
derivatives of higher orders. Shmidt [26, 27] applied this method to other parabolic equations
and some systems; application to the elliptic equation is discussed in [8].

In section 5 we have considered the two-dimensional equation. Applications of systems of
the linear determining equations to multidimensional equations are discussed in [28]. Solutions
of these systems give differential constraints which are compatible with the input equations.
In [28], we introduced the linear determining equations to some classes of non-evolution
equations as well. However, this is the first step in application of the above method.

Using results of section 4 one can find the following representation,

u = (a + b emt/2)2 (49)

of solution of equation

ut = �(u1/2) + mu + nu1/2 m,n ∈ R

where the functions a(x, y) and b(x, y) must satisfy the system

�a = ma2 + na �b = mab + nb.
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It is easy to show that the differential constraint

utt = u2
t

/
2u + mut/2

leads to the representation (49). The interesting reductions of some diffusion equations in
several independent variables can be found in [16, 29]. It is important to explain these
reductions by means of differential constraints.
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